1. Solving Higher Degree Equations

Question:

Solve the following equations:

i) $3 x-2=0$
ii) $x^{2}+x+1=0$
iii) $2 x^{2}-7 x+6=0$
iv) $x^{3}-x^{2}+4 x+6=0$
v) $x^{12}-6=0$

Aim:

To write a Mathematica program to solve higher degree equations.

Procedure:

- Click on Mathematica icon in the desktop.
- Open a new Notebook by clicking New Document.
- Enter the solving equation in Notebook.
- Then execute the equation by clicking Shift + Enter or by using the Enter key which is in Numeric key.
- Then we get the output in the Notebook.
$\ln [1]=$ Program :
Solve[3x-2 = 0, x]
Out $[$ l $]=$ Program : $\left\{\left\{x \rightarrow \frac{2}{3}\right\}\right\}$
nn $[2]=$ Solve $\left[x^{\wedge} 2+x+1==0, x\right]$
outri] $=\left\{\left\{x \rightarrow-(-1)^{1 / 3}\right\},\left\{x \rightarrow(-1)^{2 / 3}\right\}\right\}$
$\ln [3]=\mathrm{N}[\%]$
Out $[3]=\{\{x \rightarrow-0.5-0.866025$ i $\},\{x \rightarrow-0.5+0.866025 i\}\}$
$\ln (4)=$ Solve $\left[2 x^{\wedge} \mathbf{2 - 7 x + 6 = 0 , ~} \mathbf{x}\right]$
Out 4 \} $=\left\{\left\{x \rightarrow \frac{3}{2}\right\},\{x \rightarrow 2\}\right\}$
$\ln (5)=$ Solve $\left[x^{\wedge} 3-x^{\wedge} 2+4 x+6==0, x\right]$
Out $[5]=\{\{x \rightarrow-1\},\{x \rightarrow 1-$ ii $\sqrt{5}\},\{x \rightarrow 1+$ ii $\sqrt{5}\}\}$
In $[6]=$ Solve $\left[x^{\wedge} 12-6=0, x\right]$
Ouff $6=\left\{\left\{x \rightarrow-6^{1 / 12}\right\},\left\{x \rightarrow-\right.\right.$ if $\left.6^{1 / 12}\right\},\left\{x \rightarrow\right.$ ì $\left.6^{1 / 12}\right\},\left\{x \rightarrow 6^{1 / 12}\right\}$, $\left\{x \rightarrow-(-1)^{1 / 6} 6^{1 / 12}\right\},\left\{x \rightarrow(-1)^{1 / 6} 6^{1 / 12}\right\},\left\{x \rightarrow-(-1)^{1 / 3} 6^{1 / 12}\right\},\left\{x \rightarrow(-1)^{1 / 3} 6^{1 / 12}\right\}$, $\left.\left\{x \rightarrow-(-1)^{2 / 3} 6^{1 / 12}\right\},\left\{x \rightarrow(-1)^{2 / 3} 6^{1 / 12}\right\},\left\{x \rightarrow-(-1)^{5 / 6} 6^{1 / 12}\right\},\left\{x \rightarrow(-1)^{5 / 6} 6^{1 / 12}\right\}\right\}$

Conclusion:

Thus, the Mathematica program for solving higher degree equations was implemented successfully.

2. Solving System of Equations by Matrix Method and and Finding the Eigen Values and Eigen Vector of a Matrix of Order 4×4

Question:

Solve the following system of equation:

$-2 w+y+z=-3$
$x+2 y-z=2$
$-3 w+2 x+4 y+z=-2$
$-w+x-4 y-7 z=-19$
Aim:
To write a Mathematica program to solve system of equation by matrix method and also find the eigen values and eigen vectors of the given system.

Procedure:

- Click the Mathematica icon in the desktop.
- Open a new Notebook by clicking New Document
- Give the values of the matrices A and B.
- Call the function LinearSolve, Eigenvalues and Eigenvectors for solving given system of equations, getting eigen values and eigen vectors of A respectively.
- Then we get the output in the Notebook.

Program:

```
ln[f]:= A = {{-2, 0, 1, 1}, {0, 1, 2, -1}, {-3, 2, 4, 1}, {-1, 1, -4, -7}};
    B = {{-3}, {2}, {-2}, {-19}};
    StringForm["A = ``.", MatrixForm[A]]
    StringForm["B = ``.", MatrixForm[B]]
Out[0]= A =( cccc}-2\mp@code{0
Out[ [ ] = B = (
ln[f]:= {{w}, {x}, {y}, {z}} = LinearSolve[A, B];
    StringForm["w = ``, x = ``, y = ``, and z = ``.", w, x, y, z]
Out[0]= W = 3, x = - 1, y = 2, and z = 1.
```

$\left.\ln _{n} \cdot\right]:=\mathbf{e}=$ Eigenvalues [A];
 e[[1]], e[[2]], e[[3]], e[[4]]]
v = Eigenvectors [A];
 $\mathrm{v}[$ [1]], $\mathrm{v}[[2]], \mathrm{v}[$ [3]], $\mathrm{v}[$ [4]]]

Out[0]= The eigen values are

$$
\begin{aligned}
& \text { e1 }=-4-\sqrt{3}, \\
& \text { e2 }=2+\sqrt{7}, \\
& \text { e3 }=-4+\sqrt{3}, \\
& \text { e4 }=2-\sqrt{7} .
\end{aligned}
$$

Out[-0 = The eigen vectors are

$$
\begin{aligned}
& \mathrm{v} 1=\left\{-\frac{8-\sqrt{3}}{21+5 \sqrt{3}},-\frac{-8+\sqrt{3}}{21+5 \sqrt{3}},-\frac{8-\sqrt{3}}{21+5 \sqrt{3}}, 1\right\}, \\
& \mathrm{v} 2=\left\{-\frac{3(2+\sqrt{7})}{5+13 \sqrt{7}},-\frac{5(14+\sqrt{7})}{5+13 \sqrt{7}},-\frac{50+31 \sqrt{7}}{5+13 \sqrt{7}}, 1\right\}, \\
& \mathrm{v} 3=\left\{-\frac{-8-\sqrt{3}}{-21+5 \sqrt{3}},-\frac{8+\sqrt{3}}{-21+5 \sqrt{3}},-\frac{-8-\sqrt{3}}{-21+5 \sqrt{3}}, 1\right\}, \\
& \mathrm{v} 4=\left\{-\frac{3(-2+\sqrt{7})}{-5+13 \sqrt{7}},-\frac{5(-14+\sqrt{7})}{-5+13 \sqrt{7}},-\frac{-50+31 \sqrt{7}}{-5+13 \sqrt{7}}, 1\right\} .
\end{aligned}
$$

Conclusion:

Thus, the Mathematica program for solving system of equation by matrix method and also for finding the eigen values and eigen vectors was implemented successfully.

3. Solving System of Non-Linear Equations

Question:

Solve the following system of equations:

$x y-5 y+10=0$
$x^{3}-y^{2}=2$
with initial condition $x=1, y=1$.
Aim:
To write a Mathematica program to solve system of non-linear equations.

Procedure:

- Click the Mathematica icon in the desktop.
- Open a new Notebook by clicking New Document.
- Use the function FindRoot for solving given non-linear equation with the given initial value of x and y.
- Then we get the output in the Notebook.

Program:
$f\left[u_{-}, v_{-}\right]=\left\{u v-5 v+10, u^{\wedge} 3-v^{\wedge} 2-2\right\} ;$
$f[x, y]$
FindRoot [f[x, y], \{\{x, 1\}, $\{y, 1\}\}]$
$\left\{10-5 y+x y,-2+x^{3}-y^{2}\right\}$
Out $[9]=\{x \rightarrow 3 ., y \rightarrow 5$.
$\ln [10]:=\mathbf{f}[3,5]$
Out 10$]=\{\boldsymbol{0}, \boldsymbol{0}\}$

Conclusion:

Thus, the Mathematica program for solving system of non-linear equation was implemented successfully.

4. Finding Second and Third Order Derivative of Different Functions

Question:

Find the second and third order derivatives of given function with respect to their variables:
(i) $\mathrm{f}=\mathrm{t} \sin (5 \mathrm{x})$
(ii) $g=e^{t} x^{2}$

Aim:
To write the Mathematica program for finding second and third order derivatives of the given functions.

Procedure:

- Click on Mathematica icon in desktop.
- Open a new Notebook by clicking New Document.
- Enter the given functions in the Notebook.
- Use D function to find the second and third order derivatives of the given function.
- After executing the \mathbf{D} function, we get the output in the Notebook.

Program:
$f=t \operatorname{Sin}[5 x]$
d1fx = D[f, x]
t Sin [5x]
$5 \mathrm{t} \operatorname{Cos}[5 \mathrm{x}]$
d2fx $=\mathrm{D}[\mathrm{f},\{\mathrm{x}, 2\}]$
$-25 t \operatorname{Sin}[5 x]$
d3fx $=\mathrm{D}[\mathrm{f},\{\mathrm{x}, 3\}]$
Out [14] $=-125 t \operatorname{Cos}[5 x]$
$\ln [15]:=$
$\ln [16]:=$
Out[16]=
Sin $[5 x]$
d2ft $=\mathrm{D}[\mathrm{f},\{\mathrm{t}, \mathbf{2 \}}]$
Out[17]= 0
$\mathrm{g}=\operatorname{Exp}[\mathrm{t}] \mathrm{x}^{\wedge} 2$
d2gx = $\mathrm{D}[\mathrm{g},\{\mathrm{x}, 2\}]$
Out[18]= $e^{t} x^{2}$
Out|19]= $2 e^{t}$
$\ln [20]=\mathrm{d} 3 \mathrm{gt}=\mathrm{D}[\mathrm{g},\{\mathrm{t}, 3\}]$
Out [20] $=e^{t} x^{2}$

Conclusion:

Thus, the Mathematica program for finding second and third order derivatives of the given different functions was implemented successfully.

5. Finding the Integration of Different Functions with Limits

Question:

Find the integration of given functions:

i) $\mathrm{f}=x^{7}$ with lower limit $\mathrm{a}=0$ and upper limit $\mathrm{b}=1$.
ii) $\mathrm{g}=1 / \mathrm{x}$ with lower limit $\mathrm{a}=1$ and upper limit $\mathrm{b}=2$.
iii) $\mathrm{h}=\sqrt{x} \log [x]$ with lower limit $\mathrm{a}=0$ and upper limit $\mathrm{b}=1$.
iv) $z=e^{-x^{2}}$ with lower limit $a=0$ and upper limit $b=\infty$.

Aim:
To write the Mathematica program for finding integration of the given functions.

Procedure:

- Click on Mathematica icon in desktop.
- Open a new Notebook by clicking New Document.
- Enter the given functions in the Notebook.
- Use Integrate function to find integration of the given function.
- After executing the Integrate function, we get the output in the Notebook.

Program:

```
\(\ln [21]:=f=x^{\wedge} 7\)
    F = Integrate[f, \{x, 0, 1\}]
Out[21]= \(x^{7}\)
Out \([22]=\frac{1}{8}\)
\(\ln [23]:=\mathbf{g}=\mathbf{1} / \mathbf{x}\)
    G = Integrate[g, \{x, 1, 2\}]
Out [23] \(=\frac{1}{x}\)
Out[24]= \(\log [2]\)
    \(\ln [25]:=\mathbf{h}=\operatorname{Sqrt}[\mathbf{x}] \log [\mathbf{x}]\)
    \(H=\operatorname{Integrate}[h,\{x, 0,1\}]\)
Out[25]= \(\sqrt{x} \log [x]\)
Out \([26]=-\frac{4}{9}\)
```

$\ln [27]:=\mathbf{Z}=\operatorname{Exp}\left[-\mathbf{X}^{\wedge} \mathbf{2}\right.$]
$Z=$ Integrate [z, $\{x, 0$, Infinity $\}]$
Out[27]= $e^{-x^{2}}$
Out $[28]=\frac{\sqrt{\pi}}{2}$

Conclusion:

Thus, the Mathematica program for finding the integration of the given different functions was implemented successfully.

6. Evaluation of Double and Triple Integrals

Find the integration of given functions:
(i) Integrate the following function $f(x, y)=\frac{1}{\sqrt{x+y}(1+x+y)^{2}}$ over the triangular region bounded by $0 \leq x \leq$, and $0 \leq y \leq 1-x$.
(ii) Integrate the function over the region $f(x, y, z)=y \sin x+z \cos x$ over the region $0 \leq x \leq \pi, 0 \leq y \leq 1$, and $-1 \leq z \leq 1$

Aim:
To write the Mathematica program for evaluating double and triple integrals.

Procedure:

- Click on Mathematica icon in desktop.
- Select the command window.
- Open a new Notebook by clicking New Document.
- Enter the given functions in the Notebook.
- Use Integrate function with given limits to evaluate double and triple integral respectively.
- After executing the Integrate function, we get the output in the Notebook.

Program

```
\(\ln [53]:=\mathrm{f}=1 /\left(\operatorname{Sqrt}[\mathrm{x}+\mathrm{y}](1+\mathrm{x}+\mathrm{y})^{\wedge} 2\right)\)
    ymax = 1-x;
    ans \(=\) Integrate [f, \(\{x, 0,1\},\{y, 0, y m a x\}]\)
Ou[5] \(\left[=\frac{1}{\sqrt{x+y}(1+x+y)^{2}}\right.\)
Out \([5]=\frac{1}{4}(-2+\pi)\)
\(\ln [56]=\mathbf{N}[\%, 4]\)
Out[56] 0.2854
\(\ln [57]=\operatorname{Clear}[x, y, g, f, z]\)
    \(g=y \operatorname{Sin}[x]+z \operatorname{Cos}[x]\)
    ans2 \(=\operatorname{Integrate}[\mathrm{g},\{\mathrm{x}, 0, \mathrm{Pi}\},\{y, 0,1\},\{z,-1,1\}]\)
    \(z \operatorname{Cos}[x]+y \operatorname{Sin}[x]\)
out[59= 2
```


Conclusion:

Thus, the Mathematica program for evaluating the double and triple integrals was implemented successfully.

7. Solving Ordinary Differential Equations with Initial Conditions

Question:

Solve the equation $\frac{d y}{d t}=$ ty with initial condition $y(0)=2$.

Aim:

To write the Mathematica program for solving ODE with initial conditions.

Procedure:

- Click on Mathematica icon in desktop.
- Select the command window.
- Open a new Notebook by clicking New Document.
- Enter the given functions in the Notebook.
- Use DSolve function with given initial condition for y with respect to t.
- After executing the DSolve function, we get the output in the Notebook.

Program:

ClearAll[Derivative]
Clear [x, y, t]
ode $=t y[t]$
ans = DSolve[\{y'[t] == ode, $y[0]==2\}, y[t], t]$
outbra] $=t y[t]$
Out[6] $=\left\{\left\{y[t] \rightarrow 2 e^{\frac{t^{2}}{2}}\right\}\right\}$

Conclusion:

Thus, the Mathematica program for solving the ordinary differential equation was implemented successfully.

8. Solving System of Ordinary Differential Equations

Question:

Solve the following system of ordinary differential equation

$$
\begin{aligned}
& \frac{d u}{d t}=3 u+4 v \text { and } \frac{d v}{d t}=-4 u+3 v \\
& \text { with initial conditions } u(0)=0 \text { and } v(0)=1
\end{aligned}
$$

Aim:
To write the Mathematica program for solving system of ODE with initial conditions.

Procedure:

- Click on Mathematica icon in desktop.
- Select the command window.
- Open a new Notebook by clicking New Document.
- Enter the given functions in the Notebook.
- Use DSolve function with given initial condition for u and v with respect to t.
- After executing the DSolve function, we get the output in the Notebook.

Program:

```
ln[64]:=
    ClearAll[Derivative]
    Clear[u, v, x, ans]
    odeu = 3u[t] + 4v[t]
    odev = -4u[t] + 3v[t]
    ans = DSolve[{u'[t] == odeu, v'[t] == odev, u[0] == 0, v[0] == 1}, {u[t], v[t]}, t]
    3u[t] + 4v[t]
Out[67]= -4u[t] + 3v[t]
```


Conclusion:

Thus, the Mathematica program for solving the system of ordinary differential equation was implemented without any error and the output is displayed in the notebook successfully.

9. Creating and Plotting 2-D and 3-D Graphs

Question:

i. Create 2-D graph of $y 1=\sin (x)$ and $y 2=\cos (x)$ where $0 \leq x \leq 30 \pi$
ii. Create 3-D graph of $x=(3+\operatorname{Cos}[\sqrt{32} t]) \operatorname{Cos}[t], y=\operatorname{Sin}[\sqrt{32} t]$ and $z=(3+\operatorname{Cos}[\sqrt{32} t]) \operatorname{Sin}[t]$ where $0 \leq \mathrm{t} \leq 30 \pi$

Aim:

To write the Mathematica program for creating and plotting 2-D and 3-D graphs.

Procedure:

- Click on Mathematica icon in desktop.
- Select the command window.
- Open a new Notebook by clicking New Document.
- Enter the given functions in the Notebook.
- use Plot and ParametricPlot3D functions for plotting 2-D and 3-D graph respectively
- After executing the Plot and ParametricPlot3D function, we get the output in the Notebook.

Program:

Clear [y1, y2, x]
$y 1=\operatorname{Sin}[x]$;
$\mathrm{y} 2=\operatorname{Cos}[\mathrm{x}]$;
Plot [y1, \{x, 0, 30 Pi $\}$, AxesLabel $\rightarrow\{$ Style[x, Bold, FontSize \rightarrow 19, Darker[Green]], Style[y1, Bold, FontSize \rightarrow 19, Darker [Green]]\}, PlotStyle \rightarrow Directive[Green]]
$\sin (x)$

$\ln [73]:=\mathrm{Plot}[y 2,\{x, 0,30 \mathrm{Pi}\}$,
AxesLabel \rightarrow \{Style[x, Large, Darker[Blue]], Style[y2, Large, Darker [Blue]]\}, LabelStyle \rightarrow Directive[Bold, Darker [Blue]], PlotStyle \rightarrow Directive [Blue]]
$\cos (x)$

$\ln [74]:=\operatorname{Plot}[\{y 1, y 2\},\{x, 0,30$ Pi\}, PlotLegends $\rightarrow\{S i n x, \operatorname{Cosx}\}$, PlotLabel \rightarrow Style["Combined Graph", FontSize $\rightarrow 25$, FontColor \rightarrow Hue [.5]], LabelStyle \rightarrow Directive [Bold]]

Combined Graph

Plotting 3D Graph

$\ln [75]:=$
Clear [x, y, z, t]
$x=(3+\operatorname{Cos}[\operatorname{Sqr}[32] t]) \operatorname{Cos}[t] ;$
$y=\operatorname{Sin}[\operatorname{Sqrt}[32] t] ;$
$z=(3+\operatorname{Cos}[\operatorname{Sqr}[[32] t]) \operatorname{Sin}[t] ;$
ParametricPlot3D[\{x, y, z\}, \{t, 0, 30 Pi$\}$, ColorFunction \rightarrow "Rainbow"]
(20.5

Conclusion:

Thus, the Mathematica program for creating and plotting 2-D and 3-D graph was implemented without any error and the output is displayed in the notebook successfully.

10. Solving Linear Programming Problems

Question:

Maximize $z=4 x_{1}+3 x_{2}$
Subject to the constraints,

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 1000 \\
& x_{1}+x_{2} \leq 800 \\
& 0 \leq x_{1} \leq 400 \\
& 0 \leq x_{2} \leq 700
\end{aligned}
$$

Aim:
To write the Mathematica program for creating and plotting 2-D and 3-D graphs.

Procedure:

- Click on Mathematica icon in desktop.
- Select the command window.
- Open a new Notebook by clicking New Document.
- use Maximize function for solving given LPP problem
- After executing the Maximize function, we get the output in the Notebook.

Program:

$\ln [80]:=\operatorname{Clear}[x, y]$
$\{\max , \operatorname{sol}\}=\operatorname{Maximize}[\{4 x+3 y, 2 x+y \leq 1000, x+y \leq 800,0 \leq x \leq 400,0 \leq y \leq 700\},\{x, y\}]$
Out[81] $=\{2600,\{x \rightarrow 200, y \rightarrow 600\}\}$
$\ln [82]:=\{2600,\{x \rightarrow \mathbf{2 0 0}, y \rightarrow \mathbf{6 0 0}\}\}$
StringForm["The optimatl solution is $=\cdots$ with $x=\cdots$ and $y=\cdots$ ", max, sol[[1]], sol[[2]]]
Out[82] $=\{2600,\{x \rightarrow 200, y \rightarrow 600\}\}$
Out[83]= The optimatl solution is $=2600$ with $x=x \rightarrow 200$ and $y=y \rightarrow 600$.

Conclusion:

Thus, the Mathematica program for solving linear programming problem was implemented without any error and the output is displayed in the notebook successfully.

